Electronic Structure Calculations for Plane-wave Codes without Diagonalization
نویسندگان
چکیده
We present an algorithm to reduce the computational complexity for plane-wave codes used in electronic structure calculations. The proposed algorithm avoids the diagonalization of large Hermitian matrices arising in such problems. The computational time for the diagonalization procedure typically grows as the cube of the number of atoms, or the number of eigenvalues required. To reduce this computational demand, we approximate directly the occupation operator corresponding to the eigenvectors associated with the occupied states in a certain subspace without actually computing these eigenvectors. A smoothed Chebyshev-Jackson expansion of the Heaviside function of the Hamiltonian matrix is used to represent the occupation operator. This procedure requires only matrix-vector products and is intrinsically parallelizable.
منابع مشابه
Electronic Structure Calculations in Plane-wave Codes without Diagonalization
We present an algorithm to reduce the computational complexity for plane-wave codes used in electronic structure calculations. Our proposed algorithm avoids the diagonalization of large Hermitian matrices arising in such problems. The computational time for the diagonalization procedure typically grows as the cube of the number of atoms, or the number of eigenvalues required. To reduce this com...
متن کاملImproving the Efficiency of FP-LAPW Calculations
The full-potential linearized augmented-plane wave (FP-LAPW) method is well known to enable most accurate calculations of the electronic structure and magnetic properties of crystals and surfaces. The implementation of atomic forces has greatly increased its applicability, but it is still generally believed that FP-LAPW calculations require substantial higher computational effort compared to th...
متن کاملIterative diagonalization in augmented plane wave based methods in electronic structure calculations
Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this proble...
متن کاملDensity Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage
Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...
متن کاملAb initio pseudopotential plane-wave calculations of the electronic structure of YBa2Cu3O7.
We present an ab initio pseudopotential local density functional calculation for stoichiometric high-Tc cuprate YBa2Cu3O7 using the plane-wave basis set. We have overcome well-known difficulties in applying pseudopotential methods to first-row elements, transition metals, and rare-earth materials by carefully generating norm-conserving pseudopotentials with excellent transferability and employi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998